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ABSTRACT

Buckling strength and imperfection sensitivity are major considerations in the analysis and
design of structural shell forms. In this paper, the buckling load and its sensitivity to through
crucks with variable length and orientation, and buckling mode shapes of cylindrical shells under
tarsional loading are studied. A general finite element model has been proposed and capability
of this model in predicting the torsional buckling load has been verified. The model is then
applied 1o the analvsis of cylindrical shells with circumferental. axial and angled cracks of
various lengths. The results are presented in the form of tables and normalized figures.
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1L INTRODUCTION

Plate and shell structures have a wide use in the new technological fields of eivil and mechanical
cngincering, such as asrospace and marine stroctures, large dams, tall silos and long span roofs.
The development of construction technology and new materials such as composites, which are
light, firm and economical, has stimulated vast rescarch on shell structures [1-3]. One of the
greatest concerns of structural engineers, 15 the safety reliability of such structures during
utilization  period. Shell structures, like many other types of structures, are subjected fo damages
ranging from  corrosion, chemical rushes and erosion. to initiation and expansion of eracks, The
effects of these damages are wvery critical because in shell structures buckling behavior
determines load carrving capacity and this behavior 18 very sensitive 1o imperfections [4-6].
There is also the gquestion of how a crack, as an initial imperfection, affects the load carrving
capacity of a shell structure. Though o is well known that the presence of cracks ar similar
imperfections can considerably reduce the buckling load of a shell structure, there are no delinite
ouidelines for structural engineers (o estimale the clfects of such imperlections and the decrease
of load carrying capacity of & cracked shell structure.

In this research, the buckling sensitivities of cvlindrical shells under torsional loading, when
subjected  through cracks with various parameters such as crack length, crack angle, edee
conditions and Poisson’s ratio are studied. A general finite element model has been proposcd
and its behavior in estimating the torsional buckling load has been determined in the case ol non-
cracked shells. After the assessment of model correctmess, the behavior of some cracked shells,
for which documented results are not available, is studied. These stedies include some mare than
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pressure and tension [13].
3. THEORETICAL BUCKLING LOAD ANALYSIS

The chijective of Solid Mechanics s to define the delformation equations of the body in such a
way to satisfy the equilibrium equations, As it is known that the stress depends on strain, and the
strain depends on deformation. a series of second order difTerential equations must be solved,
These equations can only bhe solved with accuracy for simple geometric conditions and
loading, but in the cases of complicated geomelric and general loading and boaundary conditions,
these equations are not applicable and  stead numerical and approximate methods should be
used. Such approximate solutions, like Finite Elements Method analysis, incorporate energy
method, or in the other words, the principle of minimum potential energy. This principle states
that for a conservalive system, amoeny all deformation cases which satisty boundary condition,
that deformation  meets the equilibrium conditions that maximizes/minimizes the potential
energy of the total system and if this desired deformation minimizes the potential energy. Lhe
equilibritnm of the hody will remain stable. The total polential energy of an clustic body 15 shown

by [, we have:
=0+ F (1)

In this equation, U is the strain energy of the body tor an clastic material which results from the
tallowing formmla;
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and ¥, means the potential work or aceomplishment of extemal foading. With the assomption of
conservation of applied load:
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[ the above equaticon. n is the number of point loads exerted on the body,

The porpose of caleulating the buckling lead is to estimate the maximum foad a structure can
carry  helore instability. The most exact procedure to caleulate the buckling load of a structure, is
the nenlinear analysis with incremental loading, while the structure irself buckles at the point
where the slope of load-delformation curve becomes wero. Howewver, this procedure 15 very time
consuming and expensive, needing advanced computer programs.  Furthermore, for practical
purposes, an eigen value analysis will work with good precision. The equation for computing the
cigen value of the sulTness matrix is:

(K +2,K, Ju =0 (4)

[n the ahove ecquation, . is the eigen amount of §, or in other words, the bucking load factor of
w15 the eigen vector of 1 or defirmation in mode L and K, is the geometric or initial stifthess
mitrix,
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4. THE STUDY OF EXISTING THEORIES

Here the theories und existing theovetical celations generally presentied for caleululing non-
cracked cylindrical shells buckling load are studied. The existing theoratical Formulas are used
tor gomparison with the numerical results of the compuler, Foroinstance, the most famous
existing theory in this ficld is Danel's nonlinear theory. This theory was made by Dannel in
1933, in relanen 1o lorional buckling analyee of the shorl shells with thin walls. Beeause of ity
relative simpliciy and e practical accuracy, this theory has sained wide use in solving the
buckling problems and afler-buckling phenomenon.

Danels Formwla For coleulating the oylindrical shells buckling load with 2 more than 10,000
is as the following
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For z less than 100000 buckling load factor is caleulated numerically and mentioned in the
related  tables. The wther important theories are Flugge and Sanders-Quiter’s [L6,17].
Timoshenko in his book vsed the general theory of shells made by A E. Love to present the
[ellowing formula fon the calewlation of the buckling load of a cvlindrical shell under torsion

[18]:
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M oan allternative, the following formula has been proposed by other researchers [19]:

I { ¢ ;3\M
(1-v }——_::.-—1 39 +.196.9 4 0.603 J1-v2 (%)
t \ rt |

[t should be mentioned that to calculate the critical tortional Momend from the above

formulas, the following equation can be ysed;

["'"'In.'r = E.Tr: KTer {g}
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5. MAKING THE COMPUTERIZED MODEL AND THE ASSESSMENT
OF ITS ACCURACY

To make the compuierized model and assess its accuracy, the effective parameters in numerical
results oblained [rom computer for static and lortional loading will be studied. In order to check
the numerical results obtained from compuier, non-cracked models will be used. In this case,
there would be intermediary  theories w compare the numerical and theoretical results. Among
the studied cases in this section are the elfect of element size, shell thickness, shell length and
Poisson's ratio for caleulating the buckling load and the static study of eylindneal shells under
tortional load.

3 Suitable glement size for calowlating the buckling load

Considering the shape of the shell and the complexity of the case, 1t 1s concluded that to get the
proper result, very  small element mesh s required. This was proved after some experimental
model analyzing and observation of numerical accuracy. The element sizes must be such o
cover the buckling shape of the shell.

If the accuracy of the element is less than @ centain amount, seme buckling modes that have
many waves {especially circumferential waves) will be eliminated and computer program will
converge 1o upper mades. This subject cspecially in regard to cylindrical shells which have
much close buckling modes with  short circumferentially waves, is highly inportant. To make
sure of the appropriate number of considered elements, shells with different amounts of elements
will  he studicd. First, we will start with 2 small amount of circumferential elements and
gradually will decrease the element mesh o study the process of results convergence 1o the
theoretical amount, 1t is obvious that in the case of shell element, the greatest accuracy will be
obtained when the element is square or close o square. Besides, there is no need to usc
reclangular-shaped  elements. In all cases, it has been tried to arrange the number of
cireumierential clements in shell and shell height, such that the element size would be as close 1o
square as possible. The structure used as a basis was an aluminum cylindrical shell with medium
height. The critical torsional moment of this shell (M) for non-cracked condition, can be
ehtained from different thearetic formulas as the follows:

t= lmm i t = Zmin

Donnel™s theory 180661 85,349
Relerence (18] L5005 o1.267
Reference [19] 19,115 a0,711

General shell geomety  and plan wview of buckled shape of models with 22 and 36
circumferential elements are drawn in Figures 1 and 2 respectvely. These shapes are important
because they help o distinguish the number of circamferential waves and to illustrate the
svimmoetry  of buckled shapes. As the study of buckling shapes shows, the number of
circumferentizl elements, even less than 30, makes no problem for the formation of the bucklad
shape and  the number of buckled-shape circumferential waves corresponds to that mentioned in
Danel's theory. A study of convergence of buckling load for analvered models shaws thal with an
mcrease  in the number of clements. the numerical results will gradually converge to the
theoretical amount, A reasonable number  of circumferential elements should be considercd in
order W have both weceptable sccuracy and cconomy of Hme based on convergence tests. Wilh
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respect o the buckling mode shapes, bucking load scale chart and the efficient time lor
caleulating cach maodel. the number of the elements on the cylindrical circumierence (27 « 37 =
361 will be c¢hosen, Therefore, on each boundary edge, we have 72 nodes, This number of
clements  gives acceptable acouracy (less than 3% fault n worst cases) in calculating the
buckling load of the shell
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Figure T Basic eylinder dimensions and coordinate system.

3.2 Ceonmperrizonn with the seatic behavior of non-cracked aiode!

In the pexr step, n order (o make sure of the model accuracy, the behavior of the non-cracked
eyvlindrical static model would be studied. For this purpose, an uncracked cylindrical model with
2mm thickness under tortional moment equal o 1000 Newtan-meter is considered,

The medel's upper cap rotation angle when subjected to load is 4.729.10°° radian which is
exactly equal to the theoretical amoeunt. In this model, the amount of shearing stress per unit
thickness 13 equal o 636,620 Newton/Meter which is also exactly the amount of N, obtained
from the theory. It can be concluded that the model 15 adequate Tor modeling the stress and strain

fields in statie torsional loading
_“;g %“ﬁk
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Figure 2 Buckled shape of eylinders with 36 and 22 circumferential elements
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6. THE STUDY OF CRACKED CYLINDRICAL SHELL BEHAVIOR

.4 Static befavior of cracked cvlindrical shell

In this seclion, the static behavior of models with horeeonmtal, vertical and angled cracks s
studicd. In all of these models, crack length is 0. 7m. Typical pre-buckling elastic deformation
shape of models with axial and circumferential crack under torsional moment is depicted 1n
Figure 3. The model’s upper cap rotation angle for cylindrical shells with ditferent crucks are as

Tallows: )
Shell with circom ferential crack LTI
Shell with Axial-crack 5.!&‘{2><_1{]'q
Shell with Angled-crack 6317007
Shell with no crack 47205107

Considering  the above resulls, it seems that the shell with axial-crack undergoes less
deformation than other cases, thus having less stiffness reduction.
h

[rrr - &

b

Figure 3 Elastic deformation of shells with axial and circumfzrential eracks

6.2 Buckling betwvior of cireumfereatiolly cracked shells

The kehavior of civcum lerentizlly cracked cylindrical shells under torsion is studied, The general
specifications ol these shells are the same as non-cracked shells studied in the previeus section,
A circumferenual crack with desired length is produced on a shell and is increased gradually. In
cach stage, the normalized value of reduction of cracked shell huckling capacity is caloulated.

i

Figure 4 Front and plan view of the buckled shape of circumferentially cracked shell {crack
length is less than critical crack length).
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Buckled shape of circumferentially cracked shell with short and long crack is shown in
Figures 4 and 5. As it can be seen, the increase of crack length up to a certain limit, doesn’t
affect the buckled shape of the cylinder, in other wards, the buckling mode of the cracked shell
remains the same as that of the non-cracked shell,

In order to stody  the ellect of thickness on buckling load, each mode! 15 unalyvred with four
different thicknesses. The normalized ratio of cracked model buckling load to non-cracked
maodel buckling load (Reduction Factor or RF), with respect to crack lenght, is presented in
Figure 6. The increase in the crack length, to a certain fimit which is a property of shell
specification, has no effect on buckling load, In fact, when the crack length is less than a certain
limit, the buckling load of cracked shell is equal to that of the non-cracked shell, In additian, it
can be seen that the thickness ratio (o) has Lile effect on the reduction of buckling load.

Figure 3 Fromtand plan view of the buckled shape of circumferentially cracked shell {crack
lengrh is greater than eritical crack fength),

in order to use the resulis of this section more conveniently, 115 tried to fit 2 suitable formuls
into the above curves. After testing various formulas, the following equation is suggesied 1o
ebtain the ratio of the buckling load of cracked shell to non-cracked shell under tortional
loading:
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Figure 6 Reduction factor for shells with circumferential crack.
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6.5 Bvekling behovior af aviadle evacked shells

The behavior of axially cracked cylindrical shells under torsion is studied in this section. The
general specifications ol these shells are the same as non-cracked shells studied in the previous
section. An axial crack with desired length is produced on a shell and is increased gradually. In
cach stage, the normalized value of the reduction of cracked shell buckling capacity 1s
caleulated,

To study the effect of thickness on buckling load, each madel is analized with four differem
thicknesses. The nommalized ratio of cracked model buckling load te non-cracked model
buckling load, according o the ratio of crack length o cylinder radius, 15 presented in Figure 7.
The ncrease in the crack length, W a certain limit which is & property of shell specification has
no effect on buckling load. In Gact, when the crack length 1s less than a certain limit, the buckling
load of cracked shell 1s cqual 1w that of the non-cracked shell As can be seen, the elfect of
thickness ratio is more pronounced in this case, This figure also shows that for a cylindrical shell
with a known crack  length, with reduction in thickness, the buckling load decreases in
comparison to the buckling load of the non-gracked shell. Buckling shape plan of axially cracked
shell in three cases (crack length greaterfless than and near to the eritical crack length s shown
in Figures 8 and 9, As it can be scen, Lhe increase of crack length up to a certain limit, doeesn’t
affect the buckled shape of the cylinder, in other words, the buckling mode shape of the cracked
shell remains the same as that of the non-cracked shell. When the eracle length exceeds the
critical amount, the buckling mode shape of the shell won’t be the global buckling mode and the
shell will shaw local buckling in erack edges. This marter, will cause a high decrease in the
buckling load ta 1/2 of the non-eracked cylindrical shell buckling load. Thereafter, the buckling
load will have little sensitivity to crack length and with increase in the crack length, we will have
a small derease in the buckling load.
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Figure 7 Reduction Tactor for shells with axial crack

Tir use the results of this seclion more conveniently, 1t is tried to fit a suitable formula inte the
ahove curves. Aller lesting  warious Tormulas, the following equation is suggested to obtain the
ratio of the buckling load of cracked shell 1o non-cracked shell vnder tortional loading:

£ ™ Al =123
RF =0.842( 0.21940.655 < L’J = (1)
wE
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Figure 8 Plan view of the buckled shape of axially cracked shell with near eritical and
short eracks

Figure 9 Plan view of the buckled shape of axially cracked shell with long crack

0.4 Shells with anuled cracks and other caves sindied in this research
The behavior of the angled cracked cylindrical shells under torsion is also swdied. The peneral
specifications of these shells are the same as non-cracked shells. A crack with a specified length
is produced on the shell and the angle of the crack increases gradually. In each stage, the
normalized value of reduction of cracked shell buckling capacity is caleulated, When the crack
angle is horizontal or ablique, the behavior of shell is like to that of the horizontally eracked
shell,. When the angle of crack is near 902, the behavior of shell is like the vertically cracked
shell,

The effect of Poisson’s ratio on huckling load of a cracked evlindrical shell has been studied,
[n addition, the effect of cylinder length on buckling lead has been studied. In some cases,
different mesh generations for crack tips has been studied and checked. Curved panels with
different curvature under shearing lead have been studied 1oa. The study of non-cracked curved



FINITE ELEMENT BUCKLING ANALYSIS OF CRACKED CYLINDRICAL SHELLS 83

panels under shearing load in this research shows that if the curvature of the panel increases, the
load carrying capacity of the panel increases.

7. CONCLUSIONS

It has been observed that in shells with eircumferential cracks, the increase of crack length up to
a certain liumt, doesn’t affect the buckling load and buckled shape of the cylinder. In other
words, the behavier of the cracked shell remains the same as thae of the non-cracked shell, When
the erack length exceeds the eritical fimit, limit load beging o deteriorate.

In shells with axial crack, the increase of crack length up to a certain limit doesn’t affect the
huckled shape of the cylinder. When the crack length exceeds the critical limit, the buckling
made shape of the shell will will become a loeal buckling mode near erack edges. This matter
will cause a high decrease in the buckhng load up to 1/2 of the non-cracked cylindrical shell
buckling load. Thereafter, the buckling load will have little sensitivity to crack length and with
merease in the crack length, there will only he a small derease in the buckling load. It is also
ohserved that the eritical  erack length in shells with circumferential and axial cracks is
approximately the same.

In shells with angled crack, when the crack angle is near horizontal or oblique, the behavior
ol shell is like the horzontally cracked shell. When the angle of the crack approximates 90=, 1the
behavior of shell is like the vertically cracked shell. The load carrving capacity factor of
cylindrical shells increases as the thickness of the shell increases. On the other hand, as the
thickness of cylindrical shell increases, the sensitivity of the shell 1 crack decreases.

The eritical crack fength for eylindrical shells under torsion is larger than that for evlindrical
shells under axial compression. This means that axially compressed cylinders are mare sensitive
to the crack. The study of various methods for crack modeling in this research shows that the
methods of crack edge modeling have little effect an the buckling load of shells.
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